Publications

2025

  1. Implicit Regularisation in Diffusion Models: An Algorithm-Dependent Generalisation Analysis
    Tyler Farghly, Patrick Rebeschini, George Deligiannidis, and Arnaud Doucet
    2025
  2. NeurIPS
    Rao-Blackwellised Reparameterisation Gradients
    Kevin Lam, Thang Bui, George Deligiannidis, and Yee Whye Teh
    Accepted at NeurIPS 2025, 2025
  3. NeurIPS
    Schrödinger Bridge Matching for Tree-Structured Costs and Entropic Wasserstein Barycentres
    Samuel Howard, Peter Potaptchik, and George Deligiannidis
    Accepted at NeurIPS 2025, 2025
  4. NeurIPS
    Diffusion Models and the Manifold Hypothesis: Log-Domain Smoothing is Geometry Adaptive
    Tyler Farghly, Peter Potaptchik, Samuel Howard, George Deligiannidis, and Jakiw Pidstrigach
    Accepted at NeurIPS 2025, 2025
  5. Implicit Regularisation in Diffusion Models: An Algorithm-Dependent Generalisation Analysis
    Tyler Farghly, Patrick Rebeschini, George Deligiannidis, and Arnaud Doucet
    arXiv preprint arXiv:2507.03756, 2025
  6. Mixing Time Bounds for the Gibbs Sampler under Isoperimetry
    Alexander Goyal, George Deligiannidis, and Nikolas Kantas
    2025
  7. ICML
    Conditioning Diffusions Using Malliavin Calculus
    Jakiw Pidstrigach, Elizabeth Baker, Carles Domingo-Enrich, George Deligiannidis, and Nikolas Nüsken
    In ICML 2025, 2025
  8. COLT
    Linear Convergence of Diffusion Models Under the Manifold Hypothesis
    Peter Potaptchik, Iskander Azangulov, and George Deligiannidis
    In Proceedings of Thirty Eighth Conference on Learning Theory, 2025
  9. Understanding the Generalization Error of Markov algorithms through Poissonization
    Benjamin Dupuis, Maxime Haddouche, George Deligiannidis, and Umut Simsekli
    2025

2024

  1. On importance sampling and independent Metropolis-Hastings with an unbounded weight function
    George Deligiannidis, Pierre E Jacob, El Mahdi Khribch, and Guanyang Wang
    2024
  2. Differentiable Cost-Parameterized Monge Map Estimators
    Samuel Howard, George Deligiannidis, Patrick Rebeschini, and James Thornton
    2024
  3. Convergence of Diffusion Models Under the Manifold Hypothesis in High-Dimensions
    Iskander Azangulov, George Deligiannidis, and Judith Rousseau
    2024
  4. Ranking in Generalized Linear Bandits
    Amitis Shidani, George Deligiannidis, and Arnaud Doucet
    In Workshop on Recommendation Ecosystems: Modeling, Optimization and Incentive Design, 2024
  5. JRSSb
    From denoising diffusions to denoising Markov models
    Joe Benton, Yuyang Shi, Valentin De Bortoli, George Deligiannidis, and Arnaud Doucet
    JRSS(b) (discussion paper), 2024
  6. Error Bounds for Flow Matching Methods
    Joe Benton, George Deligiannidis, and Arnaud Doucet
    Transactions on Machine Learning Research, 2024
  7. AISTATS
    On the expected size of conformal prediction sets
    Guneet S Dhillon, George Deligiannidis, and Tom Rainforth
    In AISTATS, 2024
  8. Linear Convergence Bounds for Diffusion Models via Stochastic Localization
    Joe Benton, Valentin De Bortoli, Arnaud Doucet, and George Deligiannidis
    ICLR (spotlight), 2024
  9. ICML
    Particle Denoising Diffusion Sampler
    Angus Phillips, Hai-Dang Dau, Michael John Hutchinson, Valentin De Bortoli, George Deligiannidis, and 1 more author
    In ICML, 2024
  10. JMLR
    Uniform Generalization Bounds on Data-Dependent Hypothesis Sets via PAC-Bayesian Theory on Random Sets
    Benjamin Dupuis, Paul Viallard, George Deligiannidis, and Umut Simsekli
    JMLR, 2024
  11. AAP
    Quantitative uniform stability of the iterative proportional fitting procedure
    George Deligiannidis, Valentin Bortoli, and Arnaud Doucet
    Annals of Applied Probability, 2024

2023

  1. NeurIPS
    A Unified Framework for U-Net Design and Analysis
    Christopher Williams, Fabian Falck, George Deligiannidis, Chris C Holmes, Arnaud Doucet, and 1 more author
    NeurIPS, 2023
  2. Wide stochastic networks: Gaussian limit and PAC-Bayesian training
    Eugenio Clerico, George Deligiannidis, and Arnaud Doucet
    In International Conference on Algorithmic Learning Theory, 2023
  3. ICML
    Generalization Bounds with Data-dependent Fractal Dimensions
    Benjamin Dupuis, George Deligiannidis, and Umut Simsekli
    ICML, 2023

2022

  1. AISTATS
    Neural Score matching for high-dimensional causal inference
    Oscar Clivio, Fabian Falck, Lehmann Brieuc, George Deligiannidis, and Chris Holmes
    In AISTATS, 2022
  2. AISTATS
    Conditional Gaussian PAC-Bayes
    Eugenio Clerico, George Deligiannidis, and Arnaud Doucet
    In AISTATS, 2022
  3. COLT
    Chained Generalisation Bounds
    Eugenio Clerico, Amitis Shidani, George Deligiannidis, and Arnaud Doucet
    In COLT, 2022
  4. NeurIPS
    A Continuous Time Framework for Discrete Denoising Models
    Andrew Campbell, Joe Benton, Valentin De Bortoli, Tom Rainforth, George Deligiannidis, and 1 more author
    NeurIPS 2022 (oral), 2022
  5. NeurIPS
    A Multi-Resolution Framework for U-Nets with Applications to Hierarchical VAEs
    Fabian Falck, Christopher Williams, Dominic Danks, George Deligiannidis, Christopher Yau, and 3 more authors
    NeurIPS 2022 (oral), 2022
  6. Conditional Simulation Using Diffusion Schrödinger Bridges
    Yuyang Shi, Valentin De Bortoli, George Deligiannidis, and Arnaud Doucet
    In UAI 2022, 2022
  7. JRSSb
    Non-reversible parallel tempering: a scalable highly parallel MCMC scheme
    Saifuddin Syed, Alexandre Bouchard-Côté, George Deligiannidis, and Arnaud Doucet
    JRSS(B), 2022

2021

  1. AISTATS
    Stable resnet
    Soufiane Hayou, Eugenio Clerico, Bobby He, George Deligiannidis, Arnaud Doucet, and 1 more author
    In AISTATS (Oral), 2021
  2. ICML
    Differentiable particle filtering via entropy-regularized optimal transport
    Adrien Corenflos, James Thornton, George Deligiannidis, and Arnaud Doucet
    In ICML (Long Oral), 2021
  3. NeurIPS
    Fractal structure and generalization properties of stochastic optimization algorithms
    Alexander Camuto, George Deligiannidis, Murat A Erdogdu, Mert Gurbuzbalaban, Umut Simsekli, and 1 more author
    NeurIPS (Spotlight), 2021
  4. AAP
    Randomized Hamiltonian Monte Carlo as scaling limit of the bouncy particle sampler and dimension-free convergence rates
    George Deligiannidis, Daniel Paulin, Alexandre Bouchard-Côté, and Arnaud Doucet
    Annals of Applied Probability, 2021
  5. Boundary of the Range of a random walk and the Fölner property
    George Deligiannidis, Sebastien Gouëzel, and Zemer Kosloff
    Electronic Journal of Probability, 2021
  6. Random walk algorithm for the Dirichlet problem for parabolic integro-differential equation
    George Deligiannidis, S Maurer, and Michael V Tretyakov
    BIT Numerical Mathematics, 2021

2020

  1. ICML
    Relaxing bijectivity constraints with continuously indexed normalising flows
    Rob Cornish, Anthony Caterini, George Deligiannidis, and Arnaud Doucet
    In ICML, 2020
  2. NeurIPS
    Hausdorff dimension, heavy tails, and generalization in neural networks
    Umut Simsekli, Ozan Sener, George Deligiannidis, and Murat A Erdogdu
    NeurIPS (Spotlight), 2020
  3. Ensemble rejection sampling
    George Deligiannidis, Arnaud Doucet, and Sylvain Rubenthaler
    2020
  4. AOS
    Controlled sequential monte carlo
    Jeremy Heng, Adrian N Bishop, George Deligiannidis, and Arnaud Doucet
    Annals of Statistics, 2020
  5. Large sample asymptotics of the pseudo-marginal method
    Sebastian M Schmon, George Deligiannidis, Arnaud Doucet, and Michael K Pitt
    Biometrika, 2020
  6. Unbiased Markov chain Monte Carlo for intractable target distributions
    Lawrence Middleton, George Deligiannidis, Arnaud Doucet, and Pierre E Jacob
    Electronic Journal of Statistics, 2020
  7. Efficient irreversible Monte Carlo samplers
    Fahim Faizi, George Deligiannidis, and Edina Rosta
    Journal of Chemical Theory and Computation, 2020
  8. Simulated tempering with irreversible Gibbs sampling techniques
    Fahim Faizi, Pedro J Buigues, George Deligiannidis, and Edina Rosta
    The Journal of Chemical Physics, 2020

2019

  1. ICML
    Scalable Metropolis-Hastings for exact Bayesian inference with large datasets
    Robert Cornish, Paul Vanetti, Alexandre Bouchard-Côté, George Deligiannidis, and Arnaud Doucet
    In ICML (Long oral), 2019
  2. AISTATS
    Bernoulli race particle filters
    Sebastian M Schmon, Arnaud Doucet, and George Deligiannidis
    In AISTATS, 2019
  3. AISTATS
    Unbiased smoothing using particle independent Metropolis-Hastings
    Lawrece Middleton, George Deligiannidis, Arnaud Doucet, and Pierre E Jacob
    In AISTATS 2019, (Oral), 2019
  4. AOS
    Exponential Ergodicity of the Bouncy Particle Sampler
    George Deligiannidis, Alexandre Bouchard-Côté, and Arnaud Doucet
    Annals of Statistics, 2019

2018

  1. AAP
    Which ergodic averages have finite asymptotic variance?
    George Deligiannidis, and Anthony Lee
    Annals of Applied Probability, 2018

2017

  1. AOP
    Relative Complexity of Random Walks in Random Scenery in the absence of a weak invariance principle for the local times
    George Deligiannidis, and Zemer Kosloff
    Annals of Probability, 2017

2016

  1. Optimal bounds for the variance of self-intersection local times
    George Deligiannidis, and Sergey Utev
    International Journal of Stochastic Analysis, 2016

2015

  1. Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator
    Arnaud Doucet, Michael K Pitt, George Deligiannidis, and Robert Kohn
    Biometrika, 2015
  2. JRSSb
    The Correlated Pseudo-Marginal Method
    George Deligiannidis, Arnaud Doucet, and Michael K Pitt
    JRSS(B), 2015

2014

  1. EJP
    Asymptotic variance of stationary reversible and normal Markov processes
    George Deligiannidis, Magda Peligrad, and Sergey Utev
    Electronic Journal of Probability, 2014

2013

  1. AOP
    Variance of partial sums of stationary sequences
    George Deligiannidis, and Sergey Utev
    Annals of Probability, 2013

2011

  1. Asymptotic variance of the self-intersections of stable random walks using Darboux-Wiener theory
    George Deligiannidis, and Sergei A. Utev
    Siberian mathematical journal, 2011

2009

  1. Optimal Stopping for processes with independent increments, and applications
    G Deligiannidis, H Le, and S Utev
    Journal of Applied Probability, 2009